\qquad
A2.A.75: Law of Sines - The Ambiguous Case: Determine the solution(s) from the SSA situation (ambiguous case)

1 In $\triangle A B C, \mathrm{~m} \angle A=74, a=59.2$, and $c=60.3$. What are the two possible values for $\mathrm{m} \angle C$, to the nearest tenth?

1) 73.7 and 106.3
2) 73.7 and 163.7
3) 78.3 and 101.7
4) 78.3 and 168.3

2 How many distinct triangles can be formed if $\mathrm{m} \angle A=35, a=10$, and $b=13$?

1) 1
2) 2
3) 3
4) 0

3 How many distinct triangles can be formed if $\mathrm{m} \angle A=30$, side $b=12$, and side $a=8$?

1) 1
2) 2
3) 3
4) 0

4 What is the total number of distinct triangles that can be constructed if $A C=13, B C=8$, and $\mathrm{m} \angle A=36$?

1) 1
2) 2
3) 3
4) 0

5 If the measure of $\angle A=40^{\circ}, a=5$, and $b=6$, how many different triangles can be constucted?

1) 1
2) 2
3) 3
4) 0

6 In $\triangle D E F, d=5, e=8$, and $\mathrm{m} \angle D=32$. How many distinct triangles can be drawn given these measurements?

1) 1
2) 2
3) 3
4) 0

7 Sam is designing a triangular piece for a metal sculpture. He tells Martha that two of the sides of the piece are 40 inches and 15 inches, and the angle opposite the 40 -inch side measures 120°. Martha decides to sketch the piece that Sam described. How many different triangles can she sketch that match Sam's description?

1) 1
2) 2
3) 3
4) 0

8 An architect commissions a contractor to produce a triangular window. The architect describes the window as $\triangle A B C$, where $\mathrm{m} \angle A=50, B C=10$ inches, and $A B=12$ inches. How many distinct triangles can the contractor construct using these dimensions?

1) 1
2) more than 2
3) 2
4) 0

Name:
9 Sam needs to cut a triangle out of a sheet of paper. The only requirements that Sam must follow are that one of the angles must be 60°, the side opposite the 60° angle must be 40 centimeters, and one of the other sides must be 15 centimeters. How many different triangles can Sam make?

1) 1
2) 2
3) 3
4) 0

Regents Exam Questions A2.A.75: Law of Sines -The Ambiguous Case 1
www.jmap.org
1 ANS: 3
$\frac{59.2}{\sin 74}=\frac{60.3}{\sin C} \quad 180-78.3=101.7$
$C \approx 78.3$
REF: 081006a2
2 ANS: 2

$$
\begin{aligned}
\frac{10}{\sin 35} & =\frac{13}{\sin B} \cdot \quad 35+48
\end{aligned} \quad<180
$$

REF: 011113a2
3 ANS: 2

$$
\begin{aligned}
\frac{8}{\sin 30^{\circ}} & =\frac{12}{\sin C} \\
C & \approx 49^{\circ} \\
\text { or } C & \approx 131^{\circ}\left(180^{\circ}-49^{\circ}\right) \\
49^{\circ}+30^{\circ} & <180^{\circ} \Delta \\
131^{\circ}+30^{\circ} & <180^{\circ} \Delta
\end{aligned}
$$

REF: 080414b
4 ANS: 2

$$
\begin{aligned}
& \frac{8}{\sin 36^{\circ}}=\frac{13}{\sin B} \\
& B \approx 73^{\circ} \\
& \text { or } B \approx 107^{\circ}\left(180^{\circ}-73^{\circ}\right) \\
& 73^{\circ}+36^{\circ}<180^{\circ} \Delta \\
& 107^{\circ}+36^{\circ}<180^{\circ} \Delta
\end{aligned}
$$

REF: 080519b
5 ANS: 2

$$
\begin{aligned}
\frac{5}{\sin 40} & =\frac{6}{\sin B} \quad . \quad 50.5+40
\end{aligned}<180
$$

REF: 061011b
6 ANS: 2

$$
\begin{array}{rr}
\frac{5}{\sin 32}=\frac{8}{\sin E} & 57.98+32<180 \\
E \approx 57.98 & (180-57.98)+32<180
\end{array}
$$

Regents Exam Questions A2.A.75: Law of Sines -The Ambiguous Case 1
www.jmap.org

REF: 011419a2
7 ANS: 1
The triangle has an obtuse angle of 120°, and may not have a second obtuse angle. Check if one triangle

$$
\begin{aligned}
\frac{40}{\sin 120^{\circ}} & =\frac{15}{\sin C} \\
C & \approx 19^{\circ}
\end{aligned}
$$

is possible. or $C \approx 161^{\circ}\left(180^{\circ}-19^{\circ}\right)$

$$
\begin{gathered}
19^{\circ}+120^{\circ}<180^{\circ} \Delta \\
161^{\circ}+120^{\circ}>180^{\circ} \sim \Delta
\end{gathered}
$$

REF: 060416b
8 ANS: 2

$$
\begin{aligned}
& \frac{10}{\sin 50^{\circ}}=\frac{12}{\sin C} \\
& C \approx 67^{\circ} \\
& \text { or } C \approx 113^{\circ}\left(180^{\circ}-67^{\circ}\right) \\
& 67^{\circ}+50^{\circ}<180^{\circ} \Delta \\
& 113^{\circ}+50^{\circ}<180^{\circ} \Delta
\end{aligned}
$$

REF: 080311b
9 ANS: 1

$$
\begin{aligned}
& \frac{40}{\sin 60^{\circ}}=\frac{15}{\sin C} \\
& C \approx 19^{\circ} \\
& \text { or } C \approx 161^{\circ}\left(180^{\circ}-19^{\circ}\right) \\
& 19^{\circ}+60^{\circ}<180^{\circ} \triangle \\
& 161^{\circ}+60^{\circ}>180^{\circ} \sim \triangle \\
& \text { REF }: 060620 b
\end{aligned}
$$

